首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   4篇
  国内免费   1篇
大气科学   1篇
地球物理   34篇
地质学   52篇
海洋学   6篇
天文学   10篇
综合类   1篇
自然地理   2篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   6篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
  1962年   1篇
  1951年   1篇
排序方式: 共有106条查询结果,搜索用时 125 毫秒
51.
52.
The Shalair area, which is located in northeastern Iraq, is considered to be part of the northern Sanandaj-Sirjan Zone (SaSZ) and contains several granitoid bodies. One of these bodies, the Mishao porphyritic-granite (MG), was crystallized at 111.6?±?2.4 Ma, based on its zircon U-Pb age. Its geochemical characteristics suggest that the MG rocks are calc-alkaline, peraluminous, I-type granites with microgranular mafic enclaves. They are enriched in SiO2, Na2O, Al2O3 and Zr and depleted in MgO, Fe2O3, Nb and Ti; in contrast, the enclave sample records lower SiO2 content and higher contents of MgO and Fe2O3. These rocks show an enrichment of LREE relative to HREE, and pronounced negative Eu anomalies implying feldspar fractionation. The isotopic and geochemical characteristics of the MG samples suggest that these rocks are evolved through fractional crystallization. In the La/Nb-Nb diagram and Sm/Nd ratios, the MG rocks and the enclave samples exhibit strong evidence for crustal contamination. The MG rocks record high initial 87Sr/86Sr (0.70625–0.70740) and low 143Nd/144Nd(i) (0.51235–0.51274) ratios. These Sr-Nd isotopic data, combined with the presence of high Th/U and Rb/Sr ratios and significant depletions of Nb, Ta and Ti, show a relation of these bodies to an active continental margin regime. Based on the age and geochemical data of the MG, this study presents new information about the occurrence of Middle Cretaceous magmatic activities, which are related to the active continental margins in the SaSZ that run parallel to the Zagros Fold-Thrust Belt.  相似文献   
53.
Data on organic and inorganic nitrogen and phosphorus, and meteorological conditions observed a few times a month at a buoy station in Mikawa Bay (Japan) are averaged on a monthly basis, and monthly transitions of chlorophylla at the station are predicted by GMDH (Group Method of Data Handling, one of the methods of nonlinear system identification) using these monthly mean data. The prediction is successful. GMDH is useful in describing the ecosystem and in predicting transitions within the bay.  相似文献   
54.
Sonic anemometer measurements are analyzed from two primary field programs and 12 supplementary sites to examine the behaviour of the turbulent heat flux near the surface with high wind speeds in the nocturnal boundary layer. On average, large downward heat flux is found for high wind speeds for most of the sites where some stratification is maintained in spite of relatively intense vertical mixing. The stratification for high wind speeds is found to be dependent on wind direction, suggesting the importance of warm-air advection, even for locally homogenous sites. Warm-air advection is also inferred from a large imbalance of the heat budget of the air for strong winds. Shortcomings of our study are noted.  相似文献   
55.
Stability and phase relations of coexisting enstatite and H2 fluid were investigated in the pressure and temperature regions of 3.1–13.9 GPa and 1500–2000 K using laser-heated diamond-anvil cells. XRD measurements showed decomposition of enstatite upon heating to form forsterite, periclase, and coesite/stishovite. In the recovered samples, SiO2 grains were found at the margin of the heating hot spot, suggesting that the SiO2 component dissolved in the H2 fluid during heating, then precipitated when its solubility decreased with decreasing temperature. Raman and infrared spectra of the coexisting fluid phase revealed that SiH4 and H2O molecules formed through the reaction between dissolved SiO2 and H2. In contrast, forsterite and periclase crystals were found within the hot spot, which were assumed to have replaced the initial orthoenstatite crystals without dissolution. Preferential dissolution of SiO2 components of enstatite in H2 fluid, as well as that observed in the forsterite H2 system and the quartz H2 system, implies that H2-rich fluid enhances Mg/Si fractionation between the fluid and solid phases of mantle minerals.  相似文献   
56.
Based on both major and trace element chemistry, the occurrence of the intergranular component in mantle-derived xenoliths from far eastern Russia has been constrained. Whole-rock trace element measurements of one xenolith show apparent negative anomalies in Ce, Th, and high field strength elements on normalized trace element patterns. The trace element pattern of the whole rock differs from those of constituent minerals, indicating that the anomalies in the whole rock are attributable to the presence of an intergranular component. That assumption was confirmed using in situ analysis of trace elements in the intergranular substance and melt inclusion using laser ablation inductively coupled plasma–mass spectrometry. Both the intergranular component and the melt inclusions have identical trace element patterns, which mean that these materials are a cognate metasomatizing agent. The anomalies are regarded as mantle metasomatism related to an aqueous fluid. Hydrous minerals were observed on the wall of the melt inclusions using micro-Raman spectroscopy, indicating that the melt inclusions contained a large amount of water. Thus, this study reveals a trace element composition of a hydrous metasomatizing agent in the mantle.  相似文献   
57.
We investigate pure luminosity evolution models for early-type (elliptical and S0) galaxies (i.e. no number density change or morphological transition), and examine whether these models are consistent with observed number counts in the B , I and K bands, and redshift distributions of two samples of faint galaxies selected in the I and K bands. The models are characterized by the star formation time-scale τ SF and the time t gw when the galactic wind starts to blow, in addition to several other conventional parameters. We find that the single-burst model ( τ SF=0.1 Gyr and t gw=0.353 Gyr), which is known to reproduce the photometric properties of early-type galaxies in clusters, is inconsistent with the redshift distributions of early-type galaxies in the field environment, owing to overpredictions of the number of galaxies at z ≳1.4 even with strong extinction which is at work until t gw. In order for dust extinction to be more effective, we treat τ SF and t gw as free parameters, and find that models with τ SF≳0.5 Gyr and t gw>1.0 Gyr can be made consistent with both the observed redshift distributions and the number counts, if we introduce strong extinction [ E ( B − V )≥1 as a peak value]. These results suggest that early-type galaxies in the field environment do not have the same evolutionary history as described by the single-burst model.  相似文献   
58.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   
59.
The process of coupled assimilation and fractional crystallization (AFC) is one of the most popular petrogenetic concepts that explains magmatic differentiation. Conventional geochemical models for this process assume that crystals are removed instantaneously from the magma body as they are produced; however, recent advances in isotopic microanalysis have clarified that the crystals are suspended within the magma body for a certain period, affecting the whole-rock composition in response to the intra-grain isotopic zoning. This study develops a mass balance model for simultaneous assimilation and imperfect fractional crystallization (AIFC) to describe the effects of suspended crystals on the path of magma evolution. The mass balance differential equations for the liquid and suspended crystals are solved simultaneously. The analytical solution of the AIFC equations gives a quantitative account of the evolution paths of trace elements and isotopes within bulk crystals, liquid, and magma (crystals plus liquid). The chemical path of the magma differs markedly from that predicted by the conventional AFC model.  相似文献   
60.
We describe the mode of occurrence and geochemical characteristics of basalts, in the Khangai–Khentei belt in Mongolia, overlain by Middle Paleozoic radiolarian chert in an extensive accretionary complex. These basalts are greatly enriched in K, Ti, Fe, P, Rb, Ba, Th, and Nb in comparison to the composition of the mid‐ocean ridge basalts, indicative of within‐plate alkaline type. Ti/Y vs Nb/Y and MnO/TiO2/P2O5 ratios of the basalts also suggest within‐plate affinities. Considering the geochemical characteristics as well as the conformable relationship with the overlying radiolarian chert, the alkaline basalts were clearly not continental but formed a pelagic oceanic island. The mode of occurrence and geochemistry of the basalts show that the alkaline basaltic volcanic activity had taken place to form an oceanic island in the Paleozoic pelagic region sufficiently far from continents to allow radiolarian ooze accumulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号